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Relationships between floral characters, pollination
mechanisms, life forms, and habitats in Araceae
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The floral traits of the inflorescences of angiosperms have coevolved to ensure and maximize pollination success.
Other factors believed to influence floral architecture are external (for example, ecological) to the inflorescence. In
order to understand the relationships between such factors and floral characters, 12 floral traits were measured
in 54 species of Araceae. An analysis was performed to determine how these traits are linked to the following: (1)
self-pollination capacity; (2) life form (evergreen versus seasonally dormant); (3) climatic conditions; and (4) type
of pollinator (i.e. flies, bees, or beetles). A significant difference was found between the pollen to ovule ratio of the
species able to self-pollinate and those unable to self-pollinate. Evergreen and tropical aroids produced a larger
number of gametes than did seasonally dormant and temperate taxa. Finally, several floral traits, such as pollen
volume and number, number of female flowers, and flower sexual type (unisexual or bisexual), showed clear
differences between the three pollinator types. Variations in floral traits between the different life forms and
climatic conditions are discussed with respect to pollination efficiency and properties of the growing season. The
pollen to ovule ratio cannot be considered as an accurate indicator of breeding systems in aroids because of the
particular pollination ecology of the family. © 2008 The Linnean Society of London, Botanical Journal of
the Linnean Society, 2008, 156, 29-42.
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INTRODUCTION may also influence the floral architecture. Such exter-
nal (for example, ecological) factors include, for
example, pollinator types, life form, and habitats.
However, contrary to the ‘internal’ relationships (i.e.
within the inflorescence) between the floral charac-
ters, these external relationships have rarely been
properly studied in angiosperms at the family level
(Raven, 1979; Plitmann & Levin, 1990; Ramirez &
Seres, 1994; Jirgens, Witt & Gottsberger, 2002;
Chouteau, Barabé & Gibernau, 2006a).

After studying 80 different species, Cruden (1977)
concluded that the pollen to ovule (P/O) ratio was
related to the plant breeding system and pollination
efficiency: “The more efficient the transfer of pollen is,
the lower the P/O should be’ (Cruden, 1977). Some
*Corresponding author. E-mail: gibernau@cict.fr recent studies have more or less confirmed the

Angiosperms have evolved a complex reproductive
structure (i.e. the flower) which functionally ensures
their reproduction. Floral architecture is directly
linked to pollination, and therefore presents charac-
ters which have coevolved in order to ensure and
maximize pollen transfer right up to the ovule
(reviewed in Cruden, 2000) and, thus, the probability
of reproduction (Cruden, 2000; Fenster et al., 2004).
The relationship between floral characters and breed-
ing system has been studied extensively (reviewed in
Cruden, 2000), but other factors not physically linked
to the inflorescence (i.e. external to the inflorescence)
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relationship between the P/O ratio, the breeding
system, and pollination efficiency (Schoen, 1977; Lord,
1980; Wyatt, 1984; Campbell, Famous & Zuck, 1986;
Philbrick & Anderson, 1987; Ritland & Ritland, 1989;
Plitmann & Levin, 1990; Mione & Anderson, 1992;
Lopez et al., 1999; Jurgens et al., 2002; Wang, Zhang
& Chen, 2004; Wang et al., 2005), whereas others
have not found any such relationship (Gallardo,
Dominiguez & Munoz, 1994; Ramirez & Seres, 1994;
Wyatt, Broyles & Lipow, 2000; Chouteau et al., 2006a;
Chouteau, Barabé & Gibernau, 2006b). These studies
also mentioned the existence of factors, such as
habitat, pollen vectors, and pollination mechanisms,
which could influence floral morphology and the P/O
ratio, but such factors were never tested (Small, 1988;
Cruden, 2000; Jirgens et al., 2002; Chouteau et al.,
2006a). According to Cruden (2000), variations in
floral traits reflect variations in pollinator efficiency
in different habitats. Such variations in the P/O ratio
and floral traits for a given pollinator have been
documented (Plitmann & Levin, 1990; Ramirez &
Seres, 1994). In addition, factors as diverse as arbo-
real or terrestrial habits and perennial or annual life
cycles seem to be important for an understanding of
the floral architecture and the ranges of the P/O ratio
in relation to the breeding system (Raven, 1979;
Plitmann & Levin, 1990; Ramirez & Seres, 1994;
Jurgens et al., 2002; Chouteau et al., 2006a). In this
study, such factors are investigated in the Araceae.

The Araceae comprises 107 genera and more than
3300 species (Mayo, Bogner & Boyce, 1997). Two main
types of inflorescence can be found in this family: (1)
those with only bisexual flowers, represented by the
genus Anthurium; and (2) those with unisexual
flowers, represented by the genus Philodendron.

For inflorescences of the Anthurium type, there is
no spatial pattern as bisexual flowers are present all
along the inflorescence. For inflorescences of the
Philodendron type, the female flowers are located in
the lower portion and the male flowers in the upper
portion. An intermediate zone of sterile male flowers
is present in certain genera (for example, Caladium,
Philodendron), and, in others, a terminal appendix
without flowers (for example, Arum) is present above
the male flowers, which has diverse functions, such as
odour and heat production (Vogel & Martens, 2000).
Aroids are present on all continents between the
latitudes 50°N and 35°S (Mayo et al., 1997). They can
be epiphytic, hemi-epiphytic, terrestrial, geophytic,
helophytic, or free-floating plants; they can be ever-
green or seasonally dormant (Mayo et al., 1997). Pol-
lination is mainly accomplished by insect vectors as
diverse as beetles, bees, and flies (Gibernau, 2003).

To date, the relationships between breeding system
and floral characters in aroids have been studied at
the intragenus level only for Anthurium and Philo-

dendron (Chouteau et al., 2006b). These studies did
not show any relationship between the P/O ratio and
breeding system, and it is believed that the P/O ratio
is not an indicator of breeding system at this level for
aroids (Chouteau et al., 2006b). The only study avail-
able at the family level (Chouteau et al., 2006a), con-
ducted on a limited number of species (for example,
nine French Guianese aroids), clearly showed a rela-
tionship between the P/O ratio and the breeding
system opposite to the findings of Cruden (1977). In
addition, in Araceae, it is thought that a link exists
between the P/O ratio and the type of pollination
mechanism, habitat, and growth mode. Terrestrial,
helophytic, and geophytic species have higher P/O
ratios than hemi-epiphytic species (Chouteau et al.,
2006a).

In order to understand floral architecture in rela-
tion to certain ecological factors external to the inflo-
rescence, the following questions were addressed: (1)
are the P/O ratio and self-pollination linked in aroids
at the family level?; (2) are floral traits influenced by
life form?; (3) are floral traits influenced by climatic
zone?; (4) do floral traits and the P/O ratio vary in
relation to pollinator type (for example, pollination
syndromes)?

MATERIAL AND METHODS

This study was conducted on 54 species belonging to
32 genera of Araceae sampled from the living collec-
tions of the Montreal and Missouri Botanical Gardens
and the Montreal Biodéme, as well as from the field
in French Guiana (see Appendix). The species listed
in Table1l were sampled during their flowering
period. Voucher specimens were deposited at the
Marie-Victorin Herbarium (MT).

For species with unisexual flowers, inflorescences
were collected during the first day of the flowering
cycle, when the spathe is open but before the pollen is
released. For each inflorescence, the total numbers of
female, male, and bisexual flowers were counted;
however, in some cases when the male flowers could
not be isolated, the total number of male flowers was
estimated. To estimate the number of male flowers, a
5 mm slice was cut in the middle of the male zone and
the number of stamens over its entire surface was
counted. The total number of stamens was obtained
by multiplying the number of stamens on the slice by
the total length of the male zone and dividing by five.
The male zone was considered to be a cylinder and
its height was measured with a digital calliper
(£0.01 mm). The total number of male flowers was
determined by dividing the total number of stamens
on the inflorescence by the mean number of stamens
per flower counted on 30 flowers from three separate
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inflorescences. As merosity in unisexual flowers
usually varies, the number of stamens per flower can
also vary.

For species with bisexual flowers, inflorescences
were collected on the first day of pollen release. In the
case of Monstera and Stenospermation, which have a
short flowering cycle of approximately 7 days (Chou-
teau et al., 2006a), the inflorescences were collected
just after the spathe had opened. For all these
species, the total number of flowers was determined
by counting all the flowers individually.

For both types of inflorescence, the number of
ovules per flower was estimated by counting the
number of locules on ten flowers and the number of
ovules per locule for ten locules for each inflorescence
collected. The ovule number per inflorescence was
obtained by multiplying the mean number of ovules
per flower by the mean number of flowers per inflo-
rescence bearing ovules.

To estimate the number of pollen grains per inflo-
rescence, three groups of five stamens were collected
on inflorescences with flowers that could not be iso-
lated and three groups of one flower on inflorescences
with flowers that could be isolated. Each group of
stamens or each flower was dissolved in 300 pL of
95% sulphuric acid for 5 days at 24 °C. The solution
was then homogenized, and 1 uL was collected and
carefully placed on a microscope slide. The number of
pollen grains was counted for three independent rep-
licates of 1 uL.

When three groups of five stamens were used, the
total number of pollen grains per flower was obtained
by multiplying the mean of the triplicate count by
300, dividing the result by five, and multiplying that
by the number of stamens per flower. When three
groups of one flower were used, the number of pollen
grains per flower was obtained by multiplying the
mean of the triplicate by 300. A complete pollen count
was performed in triplicate for each inflorescence
(83x5 stamens or 3x1 flower per inflorescence).
Standard deviations were calculated using the total
number of pollen counts (generally N = 9) of the same
species. The number of pollen grains per inflorescence
was obtained by multiplying the mean number of
pollen grains per flower by the mean number of
flowers bearing pollen. In the same way, the pollen
grain volume per inflorescence was obtained by mul-
tiplying the mean number of pollen grains per inflo-
rescence by the mean pollen volume of the species
concerned (see below). The size of the pollen grains
was estimated by measuring the diameter of the polar
and equatorial axes of the grains from dehisced
anthers. Measurements were made with an ocular
micrometer at x630. The volume of a single pollen
grain was estimated using the formula nPE%6
(Harder, 1998), where P is the polar axis diameter

and E is the equatorial axis diameter. Generally, ten
pollen grains per inflorescence were measured from
three independent inflorescences (generally N = 30).
In addition, for a few species listed in Table 1, the
pollen grain volume was estimated using Grayum’s
(1992) data on pollen diameter and applying the
formula (4/3)n(D/2)%, where D is the diameter.

The P/O ratio was calculated for the inflorescence
by dividing the mean number of pollen grains per
inflorescence by the mean number of ovules per inflo-
rescence. For the dioecious Arisaema triphyllum, the
P/O ratio was calculated by dividing the mean
number of pollen grains per inflorescence of plants
with male flowers by the mean ovule number per
inflorescence of plants with female flowers. For all
species, standard deviations were calculated using all
the inflorescences from the same species (generally
N=3).

For each inflorescence studied, the stigma area
(estimated as a circle) of ten flowers was calculated
using the diameter (0.01 mm resolution) of the
stigmas measured at x20 magnification under a dis-
secting microscope equipped with an ocular microme-
ter and the formula nD?%4, where D is the measured
diameter. To obtain the total stigmatic area of the
inflorescences, the mean stigma area was multiplied
by the mean number of flowers bearing stigmas for
each species. When inflorescences bore fewer than ten
female flowers, all the stigmas were measured.

A minimum of three inflorescences per species
(Table 1) were bagged at the bud stage. After anthe-
sis, if at least one inflorescence had set fruit, the
species was considered to be potentially self-
pollinating; if all the inflorescences withered without
producing seeds, the species was considered to be
unable to self-pollinate. These qualitative observa-
tions indicate only the potential for self-pollination
rather than quantitative measurement.

The life form, growth mode, and climatic region
were obtained using Mayo et al. (1997) and from
personal observations. Species are considered to be
seasonally dormant (seasonal) when they have a
dormant stage each year associated with the loss of
the aerial vegetative system, whereas evergreen
species lose dormancy and the aerial vegetative
system is present all year around. For the growth
mode, species were categorized as epiphytic (non-
parasitic plants growing on another plant and
without having roots in contact with the ground at
any moment during their life), hemi-epiphytic (plants
growing on a host plant and having feeder roots in
contact with the ground), terrestrial (plants which
grow on the ground and lack subterranean stems),
geophytic (plants having subterranean stems, imply-
ing a tuber or rhizome), helophytic (marsh or swamp
plants growing in flooded ground with the foliage
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above the water), or free-floating (aquatic plants float-
ing above the water without any anchor roots).
Finally, the species were divided into two climatic
regions: temperate and tropical (including subtropi-
cal, tropical, and equatorial regions).

t-test analyses were used to determine differences
between groups for the variable measured (self-
pollination capacity, life form, climatic zone, and
growth mode) for all the species studied (SPSS 11.0.0,
2001). Differences in floral traits between the differ-
ent types of pollinator were tested using analysis of
variance (ANOVA) (Systat 8.0, 1998). Prior to the
analysis, the P/O ratios were logarithmically trans-
formed and the numbers of ovules were square-root
transformed. In order to study the relationships
between certain measured floral traits and the type of
pollinating insect, a stepwise backward discriminant
analysis was performed (Systat 8.0, 1998). The analy-
sis was conducted for three types of pollinating insect
(grouping variable) — bee, beetle, and fly — according
to the data available in the literature (for a review,
see Gibernau, 2003). Twenty species were coded as
beetle-pollinated, 13 as fly-pollinated, seven as bee-
pollinated, and 14 as unknown (see Table 1). Species
with unknown pollinator types were used as comple-
mentary data and, after analysis, were classified into
one of the three defined groups. The 12 floral traits
(variables) available for all species were selected in
order to test any discrimination between the three
pollinator groups: flower stigma area, stigma per
inflorescence, mean volume of a pollen grain, pollen
volume per inflorescence, pollen number per inflores-
cence, number of ovules per flower and per inflores-
cence, P/O ratio, number of female flowers, sexual
type of the flower, growth mode, and life form.

RESULTS

Table 1 summarizes the floral traits, climatic region,
life form, growth mode, pollinator type, and capacity
for self-pollination for 54 species of aroids. Of the
species studied, 41 had unisexually flowered inflores-
cences and 13 had bisexually flowered inflorescences.
Thirty-two species were evergreen and all these were
tropical or subtropical taxa with different growth
modes (eight terrestrial, four helophytic, 13 hemi-
epiphytic, five epiphytic, one free-floating, and one
geophytic). Of the 22 seasonally dormant species, all
were geophytes; seven were from temperate regions
with a wide range of temperature variation between
summer and winter, and 15 were tropical.

P/O RATIO AND SELF-POLLINATION CAPACITY

Of the 39 species bagged for the self-pollination test,
only six species set fruit and were therefore consid-

ered to be able to self-pollinate (Table 1). A significant
difference (¢-test: ¢3;=2.182, P=0.036) was found
between the P/O ratio of the group potentially able to
self-pollinate (mean log + SD, 9.89 + 0.55) and that
unable to do so (mean log + SD, 8.12 + 0.34), with the
latter group having a lower P/O ratio.

FLORAL TRAITS WITH RESPECT TO LIFE FORM

Evergreen taxa had a significantly higher volume of
pollen grains per inflorescence (¢-test: #3149 =2.872,
P=0.007) and ovule number per inflorescence
(ts637=2.183, P=0.034) than seasonally dormant
taxa (Fig. 1A, B). This was mainly a result of the
higher male (¢3160=3.381, P=0.002) and female
(t32.05 = 2.699, P =0.011) flower numbers per inflores-
cence in evergreen taxa. In addition, the stigmatic
area of a single flower (¢3367; = 2.266, P = 0.030) and of
the inflorescence (¢g965 =3.792, P=0.001) was larger
in evergreen taxa compared with seasonally dormant
ones (Fig. 1C). Finally, the P/O ratio was not signifi-
cantly different between evergreen and seasonal taxa
(ts1.80 = 0.243, P =0.809; Fig. 1D).

FLORAL TRAITS WITH RESPECT TO CLIMATIC ZONE

Because the evergreen taxa all came from tropical
regions, no analysis was performed on this group.
Floral trait comparisons were only performed
between temperate and tropical seasonally dormant
geophytic taxa (Fig.2). Tropical geophytes (15
species) produced higher pollen volumes per grain
(t-test: t1419=2.721, P=0.016) and per inflorescence
(t15.00 = 4.338, P = 0.001; Fig. 2A), whereas the number
of ovules per inflorescence was no different (¢1657 =
1.392, P =0.182; Fig. 2B). They also showed a larger
stigmatic area per inflorescence (#1522 =— 3.418,
P =0.004; Fig. 2C) than their related temperate geo-
phytic taxa (seven species). No significant difference
was found for the numbers of male (¢;5=1.396,
P=0.183) or female (ty =1.543, P=0.138) flowers
between tropical and temperate geophytes. Finally,
the P/O ratio was not significantly different between
tropical and temperate geophytes (1944 =-0.513,
P =0.614; Fig. 2D).

No significant differences in any of the considered
floral traits were found between the different growth
modes in the aroid species studied, suggesting that
there are no clear relationships between the mea-
sured floral traits and the different growth modes. It
is noteworthy that the growth modes were not inde-
pendent of climatic zones and life forms, as, in our
sampling, epiphytes and hemi-epiphytes are ever-
green and tropical taxa, and terrestrials and geo-
phytes are mainly seasonally dormant and temperate
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Figure 1. Differences in floral traits between evergreen and seasonally dormant taxa in the aroids studied. Means and
95% confidence intervals: A, pollen volume per inflorescence; B, ovule number per inflorescence; C, stigmatic area of

inflorescence; D, pollen to ovule ratio.

taxa. More data are needed to study further the
influence of this character on floral traits.

FLORAL TRAITS WITH RESPECT TO POLLINATOR TYPE

The stepwise backward discriminant analysis held
back five variables, although certain other variables
showed significant differences between pollinator
types (Table 2): pollen volume per inflorescence,
pollen number per inflorescence, number of female
flowers, sexual type of the flower, and life form. The
jackknifed classification matrix resulted in a total of
80% of the data being correctly classified (75% for
beetle pollination, 77% for fly pollination, and 100%
for bee pollination). The eigenvalues for the two axes
were 14.60 and 0.52, respectively, with the cor-
responding canonical correlations of 0.97 and
0.59. Wilks’ lambda test was significant (Wilks’
lambda = 0.042, P < 10™*). The standardized canonical
discriminant functions for each variable are pre-
sented in Table 3. The three pollinator groups are

very distinct with no overlap (see Fig. 3), but some
species were misclassified (see below). The bee-
pollinated group is characterized by species with
bisexual flowers, an evergreen life form, and a large
number of gynoecia (see Table 2). Beetle-pollinated
species are characterized by a high pollen volume per
inflorescence, a medium number of female flowers,
and almost always bear unisexual flowers (see
Table 2). Fly pollination is associated with species
with low female flower numbers and a relatively
small number of pollen grains per inflorescence (see
Table 2).

Species classification is now considered according to
pollinator type. Some species were misclassified: eight
of 40. Four beetle-pollinated species were classified
amongst fly-pollinated species, namely Typhonium
trilobatum, Typhonium violifolium, Caladium bicolor,
and Xanthosoma conspurcatum (see Fig.3). Con-
versely, the three Alocasia fly-pollinated species were
classified amongst beetle-pollinated species (see
Fig. 3). The fly-pollinated Dracontium polyphyllum
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was classified as bee-pollinated, close to Anaphyllop-
sis americana, an ‘unknown taxon’, but clearly stands
in an intermediate position between fly- and bee-
pollinated groups (see Fig. 3). The other species with
unknown pollinators were tentatively classified as
follows: the two Stenospermation species were consid-
ered to be bee-pollinated; the two Homalomena
species, Pistia stratiotes and Zomicarpella amazonica,
were classified as beetle-pollinated; and Synandros-
padix vermitoxicus, Pseudodracontium fallax, the
two Gonatopus species, and Zamioculcas zamiifolia
were considered to be fly-pollinated (Fig. 3). The two
Gonatopus species appear to be marginally separate
(like Zamioculcas zamiifolia) from the other fly-
pollinated species (Fig. 3). It should be noted that the
classifications of the unknown species were not tested
during the discriminant analysis, and thus must be
considered as hypotheses to be validated in the field.

The P/O ratio was much higher in beetle-pollinated
species (mean: 51 657) than in fly- (mean: 9807) and

bee-pollinated (mean: 10 605) species, but these dif-
ferences were not significant (Table 2). Pollen grain
volume in relation to pollinator class displayed the
same type of difference, with the pollen volume of
beetle-pollinated species being significantly larger
(mean: 123 595 um?®) than that of related fly- (mean:
19 973 um?®) and bee-pollinated (mean: 15 145 um?)
species (Table 2). In the same way, the flower stigma
surface was significantly larger in beetle-pollinated
species (mean: 3.06 mm?) than in fly- (mean:
0.85 mm?) or bee-pollinated (mean: 0.65 mm?) taxa
(Table 2).

DISCUSSION
P/O RATIO AND BREEDING SYSTEM

Aroids seem to be a family whose inflorescences are
adapted for out-breeding. Of all the species studied,
only six showed an ability to self-pollinate. This result

© 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 156, 29-42



FLOWER TRAITS AND LIFE HISTORY IN ARACEAE 37

Table 2. Group means (+standard error) used in the discriminant analysis for the different floral characters according

to type of pollinator

Beetle pollination

Fly pollination

Bee pollination

Statistic values

Floral character (N =20) (N=14) IN="T) Fos
Flower stigma area 3.06 + 0.87a 0.85 + 0.23b 0.65 + 0.09b 3.44%*
Stigma area per inflorescence 431 + 115a 76.4 + 20.3b 453 + 137a 3.84%
Mean pollen grain volume 123 595 + 35 614a 19 973 + 3674b 15 144 + 6467b 4.43%
Pollen volume per inflorescence 10 + 3.24 x 10"a 1.04 + 0.34 x 10"b 2.22 +1.03 x 10"b  3.59*
Pollen number per inflorescence 1.2 £ 0.5 x 107 0.48 £ 0.15 x 107 2.39 + 1.12 x 107 2.13
Ovule number per flower 8.89 + 2.67 9.59 + 3.14 5.28 +1.34 0.38
Ovule number per inflorescence 3719 + 1962 1286 + 620 1903 + 548 0.64
Pollen to ovule ratio 51 657 + 21 224 9807 + 3977 10 605 + 2695 1.93
Female flower number 252 + 74a 103 + 16a 853 + 321b 7.99%%
Flower sexual typet 1.95 + 0.05a 1.93 + 0.07a 1+0b 52.17%%%
Growth mode: 2.8 £ 0.28a 1.5 +0.23b 4 +0.38¢ 13.3%**
Life form§ 1.2 + 0.09a 1.79 £ 0.11b 1+0a 13.5%%

The level of significance of the analysis of variance (ANOVA) results is coded as follows: *P < 0.05, **P < 0.01,
##%P < 0.001. Group means with different letters are significantly different (post hoc test P < 0.05).

TThe flower sexual type was coded: 1, bisexual; 2, unisexual.

#The growth mode was coded: 1, geophyte; 2, helophyte; 3, ground; 4, hemi-epiphyte; 5, epiphyte.

§The life form was coded: 1, evergreen; 2, seasonally dormant.

Table 3. Standardized canonical discriminant functions
for each variable

Axis 1 Axis 2
Pollen volume per inflorescence 0.059 0.405
Pollen number per inflorescence -1.643 0.217
Number of female flowers 0.831 0.077
Sexual type of flower -1.555 0.164
Life form -0.203 -0.770

is confirmed by the fact that aroid inflorescences are
dichogamous, with stigmas receptive before pollen
release (Mayo et al., 1997). Self-pollination in some
aroids could be a mechanism for eventually ensuring
fertilization when pollinator frequencies are limited.
In addition, genera, such as Alocasia (Yafuso, 1993;
Miyake & Yafuso, 2003; M. Chouteau, pers. observ.),
Dieffenbachia (Young, 1986; Beath, 1999), and Mon-
trichardia (Gibernau et al., 2003), which are able
to self-pollinate to some degree, present distinctive
traits, such as thermogenesis, odour production,
nectar production, and even movements of the spathe
during the flowering cycle to attract entomophilous
pollinators and ensure pollination. Because self-
pollination is most probably a secondary mechanism
in the aroid family, the assumption that the P/O ratio
reflects the breeding or the compatibility system is
not found to be true in this family. As suggested by
Chouteau et al. (2006a), in Araceae, a higher P/O
ratio is most probably the result of a less efficient

pollination mechanism, and therefore, to ensure seed
production, the plant could have evolved self-
pollination mechanisms.

FLORAL TRAITS WITH RESPECT TO LIFE FORM

Little is known about floral traits with respect to life
form. Jirgens et al. (2002) found significant differ-
ences between perennial and annual Caryophyl-
loideae in terms of various floral traits. Perennial
flowers had larger numbers of pollen grains and
ovules, and greater P/O ratios, than annual flowers.
In the aroids studied, there were significant differ-
ences between seasonally dormant (perennial) and
evergreen taxa. Evergreen taxa may invest more
resources in the male reproductive function by pro-
ducing a larger number of male flowers and larger
pollen volumes per inflorescence than seasonally
dormant taxa (which are all geophytic). Ovule
numbers per inflorescence were also higher in ever-
green taxa.

Two non-exclusive main hypotheses could explain
these differences between evergreen and seasonally
dormant taxa.

1. Evergreen taxa are able to photosynthesize all
year around, and therefore can acquire more
resources to be invested in male and female func-
tions than can seasonally dormant taxa.

2. As seasonally dormant taxa produce very few inflo-
rescences per year (generally one per growing
season), they should have more efficient pollen
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Figure 3. Graph of the discriminant analysis with two point clouds detailed (bottom and top). Species from the same
genera are grouped together. Genera names are coded by the first three to six letters of their name (see Table 1).

transfer mechanisms in order to achieve pollina-
tion, leading to a decrease in the number and/or
size of flowers and/or gametes. The stigmatic area
per flower and per inflorescence is much smaller in
seasonally dormant taxa than in evergreen taxa,
which may support the hypothesis of higher polli-
nation efficiency (Cruden, 2000).

FLORAL TRAITS WITH RESPECT TO CLIMATIC ZONE

Of the seasonally dormant species studied, the tem-
perate taxa, which are true perennials, had fewer
pollen grains (mostly because of smaller pollen
volumes) than their related tropical taxa. The mean
pollen grain number per flower of the temperate
(perennial) group is consistent with data published
for the Caryophylloideae (Jiirgens etal., 2002).
However, lower ovule numbers per flower and thus
a higher P/O ratio were found for Araceae than
for Caryophylloideae, even though both perennial
Araceae and Caryophylloideae are xenogamous

(Jurgens et al., 2002). In the same way, differences
between evergreen and seasonally dormant taxa, with
lower gamete production and smaller stigma area per
inflorescence for temperate (perennial) than tropical
taxa, could result from a greater efficiency in pollen
transfer (Cruden, 1977, 2000), because of the harsh
climatic conditions and the shortness of the flowering
season in temperate latitudes. Amongst the season-
ally dormant taxa, all temperate species are known to
be pollinated by flies, whereas tropical species are
pollinated by beetles and bees.

FLORAL TRAITS WITH RESPECT TO POLLINATOR TYPE

Eight of the 40 species were misclassified by the
discriminant analysis, showing some mismatches
between floral traits and pollinator types. In the case
of Xanthosoma conspurcatum, a beetle-pollinated
species classified amongst the fly-pollinated species,
the pollen is shed in tetrads. This is very rare in the
Araceae and only known from two genera: Xantho-
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soma and Chlorospatha (Mayo et al., 1997). Conse-
quently, if the tetrad is the functional pollen unit, the
volume of Xanthosoma pollen (average of 38 798 um?)
must be multiplied by four (155 168 um?®), which
is in accordance with the mean pollen volume
(123 595 um?®) of beetle-pollinated species. However,
in most cases, there is good correspondence between
floral traits and pollinator type. The selective pres-
sure of the different types of pollinator has led to
pollination syndromes (reviewed in Fenster et al.,
2004): correlation of floral traits resulting in different
types of floral architecture adapted to particular
groups of pollinators. A few studies dealing with the
subject have focused on the P/O ratio to explain the
difference in pollination efficiency of the different
types of pollinator. It was found that, in a tropical
cloud forest community, the P/O ratio was higher in
beetle- and fly-pollinated species than in bee-, bird-
and bat-pollinated species (Ramirez & Seres, 1994).
By contrast, no differences in P/O ratios were found
amongst the species pollinated during the day (Lepi-
doptera, Hymenoptera, and Diptera) and night-
pollinated (Lepidoptera) Caryophylloideae (Jirgens
et al., 2002). Another floral trait that has been studied
in relation to the pollinator is pollen grain size, which
is believed to be optimal for collection and transpor-
tation by the pollinator without being lost (Wode-
house, 1935; Harder, 1998; Cruden, 2000). Our results
show clearly that the P/O ratios of bee- and fly-
pollinated species are similar, which is consistent
with the literature (Cruden, 2000), suggesting that
bees and flies have a similar pollination efficiency.
The much higher P/O ratio of beetle-pollinated
species, compared with other types of pollinator, lends
credence to the hypothesis that beetles may be less
effective pollinators. Pollen size was also much
greater for beetle-pollinated species than the other
classes of pollinator, which reinforces the hypothesis
of pollen size being related to pollinator in order to
maximize its transportation. The much higher P/O
ratio and pollen grain volume of beetle-pollinated
species suggest a much higher investment in pollen
production by beetle-pollinated plants. Many beetles
eat pollen, which is part of the plant’s rewards for
its pollinators (Bernhardt, 2000). Therefore, plants
having pollen rewards would tend to show a higher
pollen production to counterbalance the disadvantage
of pollen loss by direct consumption in beetle pollina-
tions. Although bees are known to harvest a pollen
‘reward’, the lower P/O ratio of this group could be
explained by the bees being more efficient pollinators
(Webb, 1984). In addition, the bee-pollinated aroids
studied all provide other types of reward which could
be favoured by the pollinator, such as stigmatic secre-
tions and sweet scents that can be collected from
Anthurium (Croat, 1980; Schwerdtfeger, Gerlach &

Kaiser, 2002) and Spathiphyllum (Lewis et al., 1988;
Gerlach & Schill, 1991; Yong, 1993), or resin known to
be harvested for nest construction from Monstera
(Ramirez & Gomez, 1978). Finally, the small pollen
size of the bee-pollinated species renders harvesting
by bees more difficult (Harder, 1998).

CONCLUSION

Floral traits seem to be correlated with pollinator
type (i.e. pollination syndromes; Fenster et al., 2004),
life form, climatic conditions, and self-pollination
capacity, whereas the growth mode has no apparent
influence. The floral characters retained for the char-
acterization of the pollinator type are pollen volume
per inflorescence, pollen number per inflorescence,
number of gyneocia, sexual type of the flower, and life
form. The number of stamens of flowers could also be
an important character, as suggested by the two male
characters retained in the discriminant analysis:
pollen number and volume. This aspect was not
included in the analysis as it was not available for all
the studied species. Further data are needed to verify
this hypothesis. These results provide new insights
into the understanding of specialized floral architec-
ture in relation to pollinator type, and could help in
identifying the pollination syndrome for a specific
species. In addition, life form and climatic region are
factors affecting investment in male and female func-
tions in aroids. Temperate and seasonally dormant
species show lower gamete production and smaller
stigma areas, suggesting more efficient pollination
mechanisms, in comparison with tropical and ever-
green species. These differences could be attributed to
the length and condition of the growing season, which
would directly influence the energy pool of plants
allocated to inflorescence production. The less energy
plants have to invest in an inflorescence, the more
efficient the pollination system. Finally, in aroids, the
P/O ratio in relation to the breeding system behaves
contrary to that found in other plant groups, suggest-
ing that it may not be linked to the breeding system.
It seems more likely that the P/O ratio is a measure
of efficiency of pollen transfer.
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APPENDIX

LOCATION COLLECTION AND LIST OF VOUCHER SPECIMENS

Species

Location (identification number)

Voucher number
(herbarium)

Alocasia sp.
Alocasia macrorrhizos (L.) G. Don
Alocasia portei Schott

Anaphyllopsis americana (Engl.) A. Hay

Anchomanes difformis (Blume) Engl.
Anthurium harrisii (Grah.) G. Don
Anthurium longistamineum Engl.

Anthurium schlechtendalii ssp.
schlechtendalii Kunth

Anubias barteri Schott

Anubias heterophylla Engl.

Arisaema dracontium (L.) Schott
Ariseama triphyllum (L.) Schott
Arum cylindraceum Gasp.

Arum italicum Mill.

Arum maculatum L.

Caladium bicolor (Aiton) Vent.

Cercestis stigmaticus N.E. Br.
Colocasia esculenta (L.) Schott

Colocasia fallax Schott

Culcasia saxatilis A. Chev.
Dieffenbachia oerstedii Schott
Dieffenbachia seguine (Jacq.) Schott

Dracontium polyphyllum L.

Dracunculus vulgaris Schott
Gonatopus angustus N.E. Br.
Gonatopus boivinii (Decne.) Engl.
Homalomena rubescens Kunth
Homalomena philippinensis Engl.

© 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 156, 29-42

Missouri Botanical Garden (No 90145)

Montreal Botanical Garden (No 1774-1956)

Montreal Botanical Garden

French Guiana

Missouri Botanical Garden (No Knecht.1)

Montreal Botanical Garden (No 635-1942)

Montreal Botanical Garden (No 1554-1958;
No 3038-1959)

Montreal Botanical Garden (No 2463-1954)

Montreal Botanical Garden (No 3548-1985)

Montreal Botanical Garden (No 1941-1999;
No 1909-1999)

Missouri Botanical Garden (No 69905)

Montreal Botanical Garden (No 1984-2000)

Corsica

Corsica

Corsica

Montreal Botanical Garden (No 2364-1992;
No 1590-1995)

Montreal Biodome (No 7078-1998)

Montreal Botanical Garden (No 1412-1998;
No 1143-1999)

Montreal Botanical Garden (No 1416-2002)

Montreal Botanical Garden (No 4094-1984)

Montreal Botanical Garden (No 1834-1955)

French Guiana

Montreal Botanical Garden (No 484-1987;
No 2464-1954)

Missouri Botanical Garden (No 942193)

Montreal Botanical Garden (No 4106-1984)

Missouri Botanical Garden (No 69740)

Montreal Botanical Garden (No 1721-1955)

Missouri Botanical Garden (No 52988)

Croat 90145 (UMO)
Chouteau 15 (MT)
Chouteau 16 (MT)
Barabé 258 (MT)
Knecht 1 (UMO)
Barabé 253 (MT)
Barabé 233 (MT)

Barabé 219 (MT)

Chouteau 17 (MT)
Barabé 197 (MT)

Croat 69905 (UMO)
Barriault 25 (MT)

Barabé 182 (MT)

Barabé 96 (MT)

Barabé 239 (MT)
Barabé 175 (MT)

Chouteau 18 (MT)

Barabé 91 (MT)

Chouteau 19 (MT)

Chouteau & Lavallée
3 (MT)

Barabé 50 (MT)

Croat 942193 (UMO)
Barabé 101 (MT)
Croat 69740 (UMO)
Barabé 108 (MT)
Croat 52988 (UMO)
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APPENDIX Continued

Species

Location (identification number)

Voucher number
(herbarium)

Monstera adansonii Schott

Montrichardia arborescens (L.) Schott
Montrichardia linifera (Arruda) Schott

Peltandra virginica (L.) Schott

Philodendron erubescens C. Koch &
Augustin

Philodendron pedatum Kunth

Philodendron squamiferum Poepp. &
Endl.

Pinellia tripartita (Blume) Schott

Pistia stratiotes L.

Pseudodracontium fallax Serebr.

Rhaphidophora schottii Hook

Spathiphyllum friedrichsthalii Schott
Spathiphyllum patinii (Mast.) N.E. Br.

Spathiphyllum wallisii Regel
Stenospermation longipetiolatum Engl.

Stenospermation sessile Engl.

Synandrospadix vermitoxicus (Griseb.)
Engl.

Syngonium angustatum Schott

Syngonium auritum (L.) Schott

Syngonium ruizii Schott

Syngonium schottianum H. Wendl. ex
Schott

Typhonium trilobatum (L.) Schott

Typhonium violifolium Gagnep.

Xanthosoma conspurcatum Schott

Zamioculcas zamiifolia (Lodd.) Engl.

Zomicarpella amazonica Bogner

French Guiana

French Guiana
French Guiana

Missouri Botanical Garden (No 96738)

Montreal Botanical Garden (No 2798-1950;
No 1892-1957)

French Guiana

Montreal Botanical Garden (No 2365-1992;
No 2201-1986)

Missouri Botanical Garden (No 78128)

Montreal Botanical Garden (No 2627-1993)

Missouri Botanical Garden (No 79452)

Missouri Botanical Garden (No Kew
478-65-47801)

Montreal Botanical Garden (No 2577-1954)

Montreal Botanical Garden (No 1779-1949;
No 2229-1960)

Montreal Botanical Garden (No 2471-1954;
No 1231-1986)

Montreal Biodome (No 7267-1992; No.
7057-1998)

Montreal Biodome (No 7003-2000)

Missouri Botanical Garden (No 62836)

Montreal Botanical Garden (No 1891-1942)

Montreal Biodome (No 7342-1992)

Missouri Botanical Garden (No 85-1656
Atwood)

Montreal Biodome (No 7013-1998)

Missouri Botanical Garden (No 53260)
Missouri Botanical Garden (No HAR194)
Montreal Botanical Garden (No 1510-2003)
Montreal Botanical Garden (No 7324-1939)
Missouri Botanical Garden (No 71763)

Chouteau & Lavallée
5 (MT)

Barabé 263 (MT)

Chouteau & Lavallée
4 (MT)

Croat 96738 (UMO)

Chouteau 12 (MT)

Barabé 259 (MT)
Barabé 136 (MT)

Croat 78128 (UMO)

Chouteau 20 (MT)

Croat 79452 (UMO)

Kew 478-65-47801
(UMO)

Chouteau 21 (MT)

Barabé 189 (MT)

Barabé 105 (MT)

Barabé 251 (MT)

Chouteau 22 (MT)
Croat 62836 (UMO)

Barabé 217 (MT)

Barabé 216 (MT)

Atwood 85-1656
(UMO)

Barabé 212 (MT)

Croat 53260 (UMO)
HAR 194 (UMO)

Barabé 84 (MT)
Croat 71763 (UMO)
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