Your search for articles by authors with the surname Macquart has found 2 articles.

Articles of 3 pages or less are available for free to IAS members for download, and longer articles for $5. Articles from issues in 2016 and beyond are only available electronically, and are free to current members when they are logged in.

Please remember that all Aroideana articles are protected by copyright, and you may NOT distribute even electronic copies without permission from the authors or editor.

Marc Gibernau, D. Macquart, A. Diaz Pollen viability and longevity in two species of Arum (Buy)
 ABSTRACT: Pollen-loaded insects are not obligatorily captured rapidly by odoriferous inflorescences after their escape from a 'pollen-donor' inflorescence, but may be caught two or three days later. In such a situation, can these insects be considered as pollinators (Le., pollen vectors) or just visitors? Our results confirm that pollen grains in both species Arum italicum and A. maculatum quickly lose their viability. In natural conditions, pollen must then be dispersed quickly between male phase and female phase inflorescences in order for the pollination to be efficient. In fact, it should happen during the first hours after female psychoda are liberated by male phase inflorescences. This is because pollinators captured on subsequent days would most probably carry non-viable pollen and thus would not pollinate the inflorescence they visit. In natural conditions, pollen grains were viable for two days. By contrast, refrigerated pollen was viable for a longer time (4-5 days). Thus refrigeration at 8 or 15°C appears to be a good method to store pollen and prolong its viability.
Marc Gibernau, D. Macquart, G. Przetak Pollination in the genus Arum - A review (Buy)
 ABSTRACT: The 28 species of the genus Arum (Araceae) attract and temporarily trap insects (mainly flies, and beetles in a few cases) during a complex pollination process. At anthesis, the appendix of the inflorescence produces heat and emits a specific odor which attracts insects. The lured insects are trapped within the floral chamber when stigmas are receptive. They will be released about 24h later after pollen emission, ensuring pollen dissemination. Studies on the reproductive biology of the genus have shown some degree of variability in the pollination strategies: morphological variations, flowering and heating periods, odor types and the type of pollinating insects. Most species of Arum have never been studied in depth but data available from the literature indicate quite a high diversity of pollination strategy within this genus. Consequently, a general pollination model is not valid at the level of the whole genus. The origin of this diversity certainly results from the biogeographic history of the genus. The plants (Le. species) have developed adaptations in response to different climatic, ecological and biotic (i.e. entomofauna) constraints (Le. selective pressures) according to the various habitats occupied in the different regions of Europe and the Middle East. However, in the absence of phylogenetic data, it is actually impossible to determine how these different reproductive strategies have developed and evolved during the history of this genus.